Skip to main content

Advertisement

Log in

Cyanobacteria mediated green synthesis of gold-silver nanoalloy

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Green synthesis is a significant process for non-toxic metal nanoparticle production employing plant materials. In the present investigation we reported an environmentally friendly method for gold-silver nano-alloy biosynthesis using a cyanobacterial strain, Lyngbya majuscula as bio-reagent. On exposure of Lyngbya thallus to equimolar solution of gold and silver (1 mM, pH 4) for 72 hrs and subsequent pink coloration of the experimental biomass indicated the nanoparticle synthesis. Extracted nanoparticles showed a distinct single plasmon band at 481 nm and further EDX analysis confirmed the presence of both the metals Au and Ag in nano-alloy form. It was also observed from TEM study that all the synthesized particles were spherical in nature with a size range of ~5-25 nm. The SEM pictures of the metal treated biomass confirmed the intra and extracellular nano-alloy formation. The XRD analysis of particle loaded biomass revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8°and 77.8° that were indexed at (111), (200), (220) and (311) lattice planes. Presence of different functional groups viz. N-H, C=C, C–O, C=O on the surface of nanoparticles were recorded by FTIR. Overall, this technique requires low energy and less manufacturing cost for metal alloy biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Au-Ag NPs:

Gold-silver alloy nanoparticles

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

EDX:

Energy dispersive X-ray

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

References

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Bios 6:385–390

    Google Scholar 

  • Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  PubMed  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor A, Avales-Borja M (2011) Biosynthesis of silver, gold, and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B 83:42–48

    Article  CAS  Google Scholar 

  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem 270:645–649

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh A, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chen D, Chen C (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562

    Article  CAS  Google Scholar 

  • Chou SF, Hsu WL, Hwang JM, Chen CY (2004) Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance. Biosens Bioelectron 19:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Lofas S, Lennernäs H, Hämäläinen MD (2000) SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J Med Chem 43:2083–2086

    Article  PubMed  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  PubMed  CAS  Google Scholar 

  • Devaranjan S, Vimalan B, Sampath S (2004) Phase transfer of Au–Ag alloy nanoparticles from aqueous medium to an organic solvent: effect of aging of surfactant on the formation of Ag-rich alloy compositions. J Colloid Interface Sci 278:126–132

    Article  Google Scholar 

  • Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B 87:23–27

    Article  CAS  Google Scholar 

  • Gole A, Dash C, Ramakrishnan V, Sainkar S, Mandale A, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17:1674–1679

    Article  CAS  Google Scholar 

  • Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold–silver alloy and core–shell bimetallic nanoparticles. J Phys Chem C 113:11861–11867

    Article  CAS  Google Scholar 

  • Haseley SR, Talaga P, Kamerling JP, Vliegenthart JFG (1999) Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Anal Biochem 274:203–210

    Article  PubMed  CAS  Google Scholar 

  • Hegde V, Wang M, Deutsch WA (2004) Characterization of human ribosomal protein S3 binding to 7, 8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance. DNA Repair 3:121–126

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R (2004) SPR for molecular interaction analysis: are view of emerging application areas. J Mol Recognit 17:151–161

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Han S, Kim K (2001) Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys. Chem Commun 18:1782–1783

  • Lengke MF, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a Silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Yu CC, Hsu TC (2007) Trace molecules detectable by surface-enhanced Raman scattering based on newly developed Ag and Au nanoparticlescontaining substrates. Electrochem Commun 9:639–644

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 11:3806–3819

    Article  Google Scholar 

  • Pal A, Shaha S, Kulkarnib V, Murthyb RSR, Devi S (2009) Template free synthesis of silver–gold alloy nanoparticles and cellular uptake of gold nanoparticles in Chinese hamster ovary cell. Mater Chem Phys 113:276–282

    Article  CAS  Google Scholar 

  • Parial D, Pal R (2014) Biosynthesis of monodispersed gold nanoparticles by green alga Rhizoclonium fontinale and associated biochemical changes. J Appl Phycol. doi:10.1007/s10811-014-0355-x

    Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria- a green chemistry approach. J Appl Phycol 27:3–10

    Google Scholar 

  • Rajasekharreddy P, Rani PU, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanoparticle Res 12:1711–1721

    Article  CAS  Google Scholar 

  • Rich RL, Day YSN, Morton TA, Myszka DG (2001) High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem 296:197–207

    Article  PubMed  CAS  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:1–6

    Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag Alloy nanoparticles. Small 1:517–520

    Article  PubMed  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  PubMed  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B 57:97–101

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  PubMed  CAS  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  Google Scholar 

  • Zhang Y, Gao G, Qian Q, Cui D (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Chen S, Zhao S, Ma H (2006) One-step synthesis of Au–Ag alloy nanoparticles by a convenient electrochemical method. Phys E 33:28–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank University Grants Commission (UGC) for financial support to first author as

UGC-Adhoc Fellowship and Urmila Goswami, Tridib Das and Prasun Mukherjee for their immense help during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roychoudhury, P., Ghosh, S. & Pal, R. Cyanobacteria mediated green synthesis of gold-silver nanoalloy. J. Plant Biochem. Biotechnol. 25, 73–78 (2016). https://doi.org/10.1007/s13562-015-0311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0311-0

Keywords

Navigation